Control Sonos with an easy to use API

In an earlier post, Controlling Sonos from a Particle Photon, we created a small app to do just that. The app itself contained some C++ code to interact with a Sonos player on your network. Although the code works, it does not provide you with full control over your Sonos player and it’s tedious to work with.

Wouldn’t it be great if you had an API at your disposal that is both easy to use and powerful? And even better, has Sonos discovery built-in so that there is no need to target Sonos players by their IP? Well, look no further as something like that exists: https://github.com/jishi/node-sonos-http-api. The Sonos HTTP API is written in Node.js which makes it easy to run anywhere!

And I do mean ANYWHERE!!! I wanted to run the API as a Docker container on my Raspberry Pi 3, which is very easy to do. Here are the basic steps I took to configure the Raspberry Pi:

With Docker up and running, I created a Dockerfile and built the image. Here is the Dockerfile:

FROM hypriot/rpi-node
RUN git clone -q https://github.com/jishi/node-sonos-http-api.git
WORKDIR node-sonos-http-api
RUN npm install > /dev/null
EXPOSE 5005
CMD [“npm”,”start”]

Note: a Raspberry Pi uses an ARM architecture which means you need to use ARM compatible images; above I used hypriot/rpi-node (see https://hub.docker.com/r/hypriot/rpi-node/)

Note 2: I’m sure there already is a Docker image for this Sonos API; I just decided to build it myself

After building the image, I tagged it sonosctrl (using docker tag). You will see the tag of this image coming back later when we run the container.

Because the API server needs to discover the Sonos devices on the network, you should not use the Docker bridge network. The command to run the container from the sonosctrl image:

docker run –net=host –restart=always -d –name SonosController sonosctrl

Now you should have a container called SonosController up and running that accepts API requests to control your Sonos:

image

Note: you also see Portainer running above; I use that to get an easy GUI for Docker on this Pi

To actually test the API, use Postman or cURL. From Postman:

image

Above, you see a request to load the Sonos playlist called “car” on players in “Living Room”. The request was successful as can be seen in the response. This command will also start playing songs from the playlist right away. If you want to pause playing:

image

Great! We have a Sonos API running on a Raspberry Pi as a Docker container with a few simple steps. We can now more easily send commands to Sonos from devices like the Particle Photon or an Arduino. I will show you how to do that from a Particle Photon using the HttpClient library in a later article.

Temboo, Twilio and Nexmo: SMS and voice messages from your IoT device

In this post, I will provide an overview of how to use Twilio and Nexmo to send SMSs and voice messages directly from your device. I will use a Particle Photon but this also works from an Arduino, or a Raspberry Pi or basically any other system. The reason for this is that I will also use Temboo, an easy to use service that basically provides a uniform way to call a wide variety of APIs and even helps you with a code builder.

I will use the same basic sketch form earlier examples. This means there is a photoresistor which measures the amount of light but also a button that will trigger the calls to Temboo to send an SMS and a voice message with the current sensor value from the photoresistor.

Let’s get started shall we? You will first need accounts for all three services so go ahead and sign up. They all have free accounts to get started but remember they are all paying services. It’s up to you to decide how useful you find these services.

For Temboo, you will need to provide the account name, app key name and app key. Sadly, in the free Temboo tier, this key is only valid for a month and you will need to manually change it. I added these values as #defines in a header file called TembooAccount.h. Be sure to use #include “TembooAccount.h” in you .ino file. The contents of the TembooAccount.h:

image

In your .ino file, we’ll create two functions:

  • void runSendSMS(String body)
  • void runSendVoice(String body)

When you want to send an SMS or send a voice message, you call the appropriate function with the message you want to send or the text you want translated to speech.

The contents of the function is easy to write because you don’t have to. Temboo provides a code generator for you. When you are logged in, just go to https://temboo.com/library/ and select the Choreo you want to use. For the SMS, you select Twilio / SMSMessages / SendSMS. You will now be asked for parameters for the Choreo:

image

After providing all the inputs, you will find the code below and then you will pick and choose what you need. You can find an example for SMS and Voice in the following gist: https://gist.github.com/gbaeke/15596e3e2d185eb11720c965ab33e179. The voice Choreo uses Nexmo / Voice / TextToSpeech. Tip: Nexmo can also take input from your phone (like press ‘1’ to turn on sprinklers) and send them back to your device!

To actually fire off the SMS and voice message, we’ll do that when the button is pressed:

image

As you can see, Temboo and the APIs it exposes as Choreos makes it really easy to work with all sorts of APIs. I have only used Twilio and Nexmo here but there are many others. Again, these are all paying services and the lowest Temboo tier is quite pricey for home users. If you find it a bit too pricey, you can always use the Particle IFTTT integration to achieve similar results.