Draft 2 and Ingress with Web Application Routing

If you read the previous article on Draft 2, we went from source code to deployed application in a few steps:

  • az aks draft create: creates a Dockerfile and Kubernetes manifests (deployment and service manifests)
  • az aks draft setup-gh: setup GitHub OIDC
  • az aks draft generate-workflow: create a GitHub workflow that builds and pushes the container image and deploys the application to Kubernetes

If you answer the questions from the commands above correctly, you should be up and running fairly quickly! 🚀

The manifests default to a Kubernetes service that uses the type LoadBalancer to configure an Azure public load balancer to access your app. But maybe you want to test your app with TLS and you do not want to configure a certificate in your container image? That is where the ingress configuration comes in.

You will need to do two things:

  • Configure web application routing: configures Ingress Nginx Controller and relies on Open Service Mesh (OSM) and the Secret Store CSI Driver for Azure Key Vault. That way, you are shielded from having to do all that yourself. I did have some issues with web application routing as described below.
  • Use az aks draft update to configure the your service to work with web application routing; this command will ask you for two things:
    • the hostname for your service: you decide this but the name should resolve to the public IP of the Nginx Ingress Controller installed by web application routing
    • a URI to a certificate on Azure Key Vault: you will need to deploy a Key Vault and upload or create the certificate

Configure web application routing

Although it should be supported, I could not enable the add-on on one of my existing clusters. On another one, it did work. I decided to create a new cluster with the add-on by running the following command:

az aks create --resource-group myResourceGroup --name myAKSCluster --enable-addons web_application_routing

⚠️ Make sure you use the most recent version of the Azure CLI aks-preview extension.

On my cluster, that gave me a namespace app-routing-system with two pods:

Nginx in app-routing-system

Although the add-on should also install Secrets Store CSI Driver, Open Service Mesh, and External DNS, that did not happen in my case. I installed the first two from the portal. I did not bother installing External DNS.

Enabling OSM
Enabling secret store CSI driver

Create a certificate

I created a Key Vault in the same resource group as my AKS cluster. I configured the access policies to use Azure RBAC (role-based access control). It did not work with the traditional access policies. I granted myself and the identity used by web application routing full access:

Key Vault Administrator for myself and the user-assigned managed id of web app routing add-on

You need to grant the user-assigned managed identity of web application routing access because a SecretProviderClass will be created automatically for that identity. The Secret Store CSI Driver uses that SecretProviderClass to grab a certificate from Key Vault and generate a Kubernetes secret for it. The secret will later be used by the Kubernetes Ingress resource to encrypt HTTP traffic. How you link the Ingress resource to the certificate is for a later step.

Now, in Key Vault, generate a certificate:

In Key Vault, click Certificates and create a new one

Above, I use nip.io with the IP address of the Ingress Controller to generate a name that resolves to the IP. For example, 10.2.3.4.nip.io will resolve to 10.2.3.4. Try it with ping. It’s truly a handy service. Use kubectl get svc -n app-routing-system to find the Ingress Controller public (external) IP.

Now we have everything in place for draft to modify our Kubernetes service to use the ingress controller and certificate.

Using az aks draft update

Back on your machine, in the repo that you used in the previous article, run az aks draft update. You will be asked two questions:

  • Hostname: use <IP Address of Nginx>.nip.io (same as in the common name of the cert without CN=)
  • URI to the certificate in Key Vault: you can find the URI in the properties of the certificate
There will be a copy button at the right of the certificate identifier

Draft will now update your service to something like:

apiVersion: v1
kind: Service
metadata:
  annotations:
    kubernetes.azure.com/ingress-host: IPADDRESS.nip.io
    kubernetes.azure.com/tls-cert-keyvault-uri: https://kvdraft.vault.azure.net/certificates/mycert/IDENTIFIER
  creationTimestamp: null
  name: super-api
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 8080
  selector:
    app: super-api
  type: ClusterIP
status:
  loadBalancer: {}

The service type is now ClusterIP. The annotations will be used for several things:

  • to create a placeholder deployment that mounts the certificate from Key Vault in a volume AND creates a secret from the certificate; the Secret Store CSI Driver always needs to mount secrets and certs in a volume; rather than using your application pod, they use a placeholder pod to create the secret
  • to create an Ingress resource that routes to the service and uses the certificate in the secret created via the placeholder pod
  • to create an IngressBackend resource in Open Service Mesh

In my default namespace, I see two pods after deployment:

the placeholder pod starts with keyvault and creates the secret; the other pod is my app

Note that above, I actually used a Helm deployment instead of a manifest-based deployment. That’s why you see release-name in the pod names.

The placeholder pod creates a csi volume that uses a SecretProviderClass to mount the certificate:

SecretProviderClass

The SecretProviderClass references your Key Vault and managed identity to access the Key Vault:

spec of SecretProviderClass

If you have not assigned the correct access policy on Key Vault for the userAssignedIdentityID, the certificate cannot be retrieved and the pod will not start. The secret will not be created either.

I also have a secret with the cert inside:

Secret created by Secret Store CSI Driver; referenced by the Ingress

And here is the Ingress:

Ingress; note it says 8080 instead of the service port 80; do not change it! Never mind the app. in front of the IP; your config will not have that if you followed the instructions

All of this gets created for you but only after running az aks draft update and when you commit the changes to GitHub, triggering the workflow.

Did all this work smoothly from the first time?

The short answer is NO! 😉At first I thought Draft would take care of installing the Ingress components for me. That is not the case. You need to install and configure web application routing on your cluster and configure the necessary access rights.

I also thought web application routing would install and configure Open Service Mesh and Secret Store CSI driver. That did not happen although that is easily fixed by installing them yourself.

I thought there would be some help with certificate generation. That is not the case. Generating a self-signed certificate with Key Vault is easy enough though.

Once you have web application routing installed and you have a Key Vault and certificate, it is simple to run az aks draft update. That changes your Kubernetes service definition. After pushing that change to your repo, the updated service with the web application routing annotations can be deployed.

I got some 502 Bad Gateway errors from Nginx at first. I removed the OSM-related annotations from the Ingress object and tried some other things. Finally, I just redeployed the entire app and then it just started working. I did not spend more time trying to find out why it did not work from the start. The fact that Open Service Mesh is used, which has extra configuration like IngressBackends, will complicate troubleshooting somewhat. Especially if you have never worked with OSM, which is what I expect for most people.

Conclusion

Although this looks promising, it’s all still a bit rough around the edges. Adding OSM to the mix makes things somewhat more complicated.

Remember that all of this is in preview and we are meant to test drive it and provide feedback. However, I fear that, because of the complexity of Kubernetes, these tools will never truly make it super simple to get started as a developer. It’s just a tough nut to crack!

My own point of view here is that Draft v2 without az aks draft update is very useful. In most cases though, it’s enough to use standard Kubernetes services. And if you do need an ingress controller, most are easy to install and configure, even with TLS.

Building a GitHub Action with Docker

While I was investigating Kyverno, I wanted to check my Kubernetes deployments for compliance with Kyverno policies. The Kyverno CLI can be used to do that with the following command:

kyverno apply ./policies --resource=./deploy/deployment.yaml

To do this easily from a GitHub workflow, I created an action called gbaeke/kyverno-cli. The action uses a Docker container. It can be used in a workflow as follows:

# run kyverno cli and use v1 instead of v1.0.0
- name: Validate policies
  uses: gbaeke/kyverno-action@v1
  with:
    command: |
      kyverno apply ./policies --resource=./deploy/deployment.yaml

You can find the full workflow here. In the next section, we will take a look at how you build such an action.

If you want a video instead, here it is:

GitHub Actions

A GitHub Action is used inside a GitHub workflow. An action can be built with Javascript or with Docker. To use an action in a workflow, you use uses: followed by a reference to the action, which is just a GitHub repository. In the above action, we used uses: gbaeke/kyverno-action@v1. The repository is gbaeke/kyverno-action and the version is v1. The version can refer to a release but also a branch. In this case v1 refers to a branch. In a later section, we will take a look at versioning with releases and branches.

Create a repository

An action consists of several files that live in a git repository. Go ahead and create such a repository on GitHub. I presume you know how to do that. We will add several files to it:

  • Dockerfile and all the files that are needed to build the Docker image
  • action.yml: to set the name of our action, its description, inputs and outputs and how it should run

Docker image

Remember that we want a Docker image that can run the Kyverno CLI. That means we have to include the CLI in the image that we build. In this case, we will build the CLI with Go as instructed on https://kyverno.io. Here is the Dockerfile (should be in the root of your git repo):

FROM golang:1.15
COPY src/ /
RUN git clone https://github.com/kyverno/kyverno.git
WORKDIR kyverno
RUN make cli
RUN mv ./cmd/cli/kubectl-kyverno/kyverno /usr/bin/kyverno
ENTRYPOINT ["/entrypoint.sh"]

We start from a golang image because we need the go tools to build the executable. The result of the build is the kyverno executable in /usr/bin. The Docker image uses a shell script as its entrypoint, entrypoint.sh. We copy that shell script from the src folder in our repository.

So go ahead and create the src folder and add a file called entrypoint.sh. Here is the script:

#!/usr/bin/env bash
set -e
set -o pipefail
echo ">>> Running command"
echo ""
bash -c "set -e;  set -o pipefail; $1"

This is just a bash script. We use the set commands in the main script to ensure that, when an error occurs, the script exits with the exit code from the command or pipeline that failed. Because we want to run a command like kyverno apply, we need a way to execute that. That’s why we run bash again at the end with the same options and use $1 to represent the argument we will pass to our container. Our GitHub Action will need a way to require an input and pass that input as the argument to the Docker container.

Note: make sure the script is executable; use chmod +x entrypoint.sh

The action.yml

Action.yml defines our action and should be in the root of the git repo. Here is the action.yml for our Docker action:

name: 'kyverno-action'
description: 'Runs kyverno cli'
branding:
  icon: 'command'
  color: 'red'
inputs:
  command:
    description: 'kyverno command to run'
    required: true
runs:
  using: 'docker'
  image: 'Dockerfile'
  args:
    - ${{ inputs.command }}

Above, we give the action a name and description. We also set an icon and color. The icon and color is used on the GitHub Marketplace:

command icon and color as defined in action.yml (note that this is the REAL action; in this post we call the action kyverno-action as an example)

As stated earlier, we need to pass arguments to the container when it starts. To achieve that, we define a required input to the action. The input is called command but you can use any name.

In the run: section, we specify that this action uses Docker. When you use image: Dockerfile, the workflow will build the Docker image for you with a random name and then run it for you. When it runs the container, it passes the command input as an argument with args: Multiple arguments can be passed, but we only pass one.

Note: the use of a Dockerfile makes running the action quite slow because the image needs to be built every time the action runs. In a moment, we will see how to fix that.

Verify that the image works

On your machine that has Docker installed, build and run the container to verify that you can run the CLI. Run the commands below from the folder containing the Dockerfile:

docker build -t DOCKER_HUB_USER/kyverno-action:v1.0.0 .

docker run DOCKER_HUB_USER/kyverno-action:v1.0.0 "kyverno version"

Above, I presume you have an account on Docker Hub so that you can later push the image to it. Substitute DOCKER_HUB_USER with your Docker Hub username. You can of course use any registry you want.

The result of docker run should be similar to the result below:

>>> Running command

Version: v1.3.5-rc2-1-g3ab75095
Time: 2021-04-04_01:16:49AM
Git commit ID: main/3ab75095b70496bde674a71df08423beb7ba5fff

Note: if you want to build a specific version of the Kyverno CLI, you will need to modify the Dockerfile; the instructions I used build the latest version and includes release candidates

If docker run was successful, push the image to Docker Hub (or your registry):

docker push DOCKER_HUB_USER/kyverno-action:v1.0.0

Note: later, it will become clear why we push this container to a public registry

Publish to the marketplace

You are now ready to publish your action to the marketplace. One thing to be sure of is that the name of your action should be unique. Above, we used kyverno-action. When you run through the publishing steps, GitHub will check if the name is unique.

To see how to publish the action, check the following video:

video starts at the marketplace publishing step

Note that publishing to the marketplace is optional. Our action can still be used without it being published. Publishing just makes our action easier to discover.

Using the action

At this point, you can already use the action when you specify the exact release version. In the video, we created a release called v1.0.0 and optionally published it. The snippet below illustrates its use:

- name: Validate policies
  uses: gbaeke/kyverno-action@v1.0.0
  with:
    command: |
      kyverno apply ./policies --resource=./deploy/deployment.yaml

Running this action results in a docker build, followed by a docker run in the workflow:

The build step takes quite some time, which is somewhat annoying. Let’s fix that! In addition, we will let users use v1 instead of having to specify v1.0.0 or v1.0.1 etc…

Creating a v1 branch

By creating a branch called v1 and modifying action.yml to use a Docker image from a registry, we can make the action quicker and easier to use. Just create a branch in GitHub and call it v1. We’ll use the UI:

create the branch here; if it does not exist there will be a create option (here it exists already)

Make the v1 branch active and modify action.yml:

In action.yml, instead of image: ‘Dockerfile’, use the following:

image: 'docker://DOCKER_HUB_USER/kyverno-action:v1.0.0'

When you use the above statement, the image will be pulled instead of built from scratch. You can now use the action with @v1 at the end:

# run kyverno cli and use v1 instead of v1.0.0
- name: Validate policies
  uses: gbaeke/kyverno-action@v1
  with:
    command: |
      kyverno apply ./policies --resource=./deploy/deployment.yaml

In the worflow logs, you will see:

The action now pulls the image from Docker Hub and later runs it

Conclusion

We can conclude that building GitHub Actions with Docker is quick and fun. You can build your action any way you want, using the tools you like. Want to create a tool with Go, or Python or just Bash… just do it! If you do want to build a GitHub Action with JavaScript, then be sure to check out this article on devblogs.microsoft.com.

%d bloggers like this: