Azure DevOps multi-stage YAML pipelines

A while ago, the Azure DevOps blog posted an update about multi-stage YAML pipelines. The concept is straightforward: define both your build (CI) and release (CD) pipelines in a YAML file and stick that file in your source code repository.

In this post, we will look at a simple build and release pipeline that builds a container, pushes it to ACR, deploys it to Kubernetes linked to an environment. Something like this:

Two stages in the pipeline – build and deploy (as simple as it can get, almost)

Note: I used a simple go app, a Dockerfile and a Kubernetes manifest as source files, check them out here.

Note: there is also a video version 😉

“Show me the YAML!!!”

The file, azure-pipelines.yaml contains the two stages. Check out the first stage (plus trigger and variables) below:

trigger:
- master

variables:
  imageName: 'gosample'
  registry: 'REGNAME.azurecr.io'

stages:
- stage: build
  jobs:
  - job: 'BuildAndPush'
    pool:
      vmImage: 'ubuntu-latest'
    steps:
    - task: Docker@2
      inputs:
        containerRegistry: 'ACR'
        repository: '$(imageName)'
        command: 'buildAndPush'
        Dockerfile: '**/Dockerfile'
    - task: PublishPipelineArtifact@0
      inputs:
        artifactName: 'manifests'
        targetPath: 'manifests' 

The pipeline runs on a commit to the master branch. The variables imageName and registry are referenced later using $(imageName) and $(registry). Replace REGNAME with the name of your Azure Container Registry.

It’s a multi-stage pipeline, so we start with stages: and then define the first stage build. That stage has one job which consists of two steps:

  • Docker task (v2): build a Docker image based on the Dockerfile in the source code repository and push it to the container registry called ACR; ACR is a reference to a service connection defined in the project settings
  • PublishPipelineArtifact: the source code repository contains Kubernetes deployment manifests in YAML format in the manifests folder; the contents of that folder is published as a pipeline artifact, to be picked up in a later stage

Now let’s look at the deployment stage:

- stage: deploy
  jobs:
  - deployment: 'DeployToK8S'
    pool:
      vmImage: 'ubuntu-latest'
    environment: dev
    strategy:
      runOnce:
        deploy:
          steps:
            - task: DownloadPipelineArtifact@1
              inputs:
                buildType: 'current'
                artifactName: 'manifests'
                targetPath: '$(System.ArtifactsDirectory)/manifests'
            - task: KubernetesManifest@0
              inputs:
                action: 'deploy'
                kubernetesServiceConnection: 'dev-kub-gosample-1558821689026'
                namespace: 'gosample'
                manifests: '$(System.ArtifactsDirectory)/manifests/deploy.yaml'
                containers: '$(registry)/$(imageName):$(Build.BuildId)' 

The second stage uses a deployment job (quite new; see this). In a deployment job, you can specify an environment to link to. In the above job, the environment is called dev. In Azure DevOps, the environment is shown as below:

dev environment

The environment functionality has Kubernetes integration which is pretty neat. You can drill down to the deployed objects such as deployments and services:

Kubernetes deployment in an Azure DevOps environment

The deployment has two tasks:

  • DownloadPipelineArtifact: download the artifact published in the first stage to $(System.ArtifactsDirectory)/manifests
  • KubernetesManifest: this task can deploy Kubernetes manifests; it uses an AKS service connection that was created during creation of the environment; a service account was created in a specific namespace and with access rights to that namespace only; the manifests property will look for an image name in the Kubernetes YAML files and append the tag which is the build id here

Note that the release stage will actually download the pipeline artifact automatically. The explicit DownloadPipelineArtifact task gives additional control over the download location.

The KubernetesManifest task is relatively new at the time of this writing (end of May 2019). Its image substitution functionality could be enough in many cases, without having to revert to Helm or manual text substitution tasks. There is more to this task than what I have described here. Check out the docs for more info.

Conclusion

If you are just starting out building CI/CD pipelines in YAML, you will probably have a hard time getting uses to the schema. I know I had! 😡 In the end though, doing it this way with the pipeline stored in source control will pay off in the long run. After some time, you will have built up a useful library of these pipelines to quickly get up and running in new projects. Recommended!!! 😉🚀🚀🚀

Securing access to and from Azure Functions

I am often asked how to secure access to and from Azure Functions that are not running in an App Service Environment (ASE). An App Service Environment allows you to safeguard your apps in a subnet of your Azure Virtual Network. In a sense, it gives you a private deployment of Azure App Service that you can secure with Azure Firewall, Network Security Groups (NSGs) or Network Virtual Appliances (NVAs).

When you use Azure Functions in a regular App Service Plan or Premium plan, you will need to rely on Virtual Network Service Endpoints and App Service network integration to achieve similar results.

In this post, we will look at an example of an Azure Function, running in a Premium plan, that queries CosmosDB. We will restrict incoming traffic to the Azure Function from a subnet and only allow CosmosDB to be queried by the same Azure Function. Here’s a diagram:

Incoming Traffic

To restrict incoming traffic to the Azure Function, navigate to the Function App in the portal and select Networking in Platform Features. You will see the following screen:

Azure Functions network features

We will configure the inbound restrictions via Configure Access Restrictions. You can configure restrictions for both the Function App itself and the scm site:

From the moment you add rules, a Deny All rule will appear. In the above rules, I allowed my private IP and the default subnet in the virtual network. The second rule configures the service endpoints. When you open the properties of the subnet, you will see:

Service Endpoint of type Microsoft.Web

Great! When you try to access the function from any other location, you will get a 403 error from the Azure Functions front-end. So don’t expect a connection timeout like with regular network security rules.

Outgoing traffic

The example Azure Function uses an HTTP trigger and a Cosmos DB input (cosmos). Documents contain a name property. The query outputs the name found on the first document:

module.exports = async function (context, req, cosmos) {
context.log(cosmos);
context.res = {
body: "hello " + cosmos[0].name
}};

In order to secure access to Cosmos DB, two features were used:

  1. Azure Functions VNet Integration (VNet integration is currently in preview)
  2. Cosmos DB network service endpoints to restrict access to the subnet that provides the Azure Function hosts with an IP address

Configuring the VNet integration is straightforward, especially when compared to the old style of integration which required a VPN tunnel:

App Service (including Azure Functions) VNet integration

As you can see in the above screenshot, you delegate a subnet to the App Service hosts. In my case, that is subnet func-sec:

Subnet delegated to a service (Microsoft.Web/serverFarms)

The bottom of the screenshot shows the subnet is delegated to the Microsoft.Web/serverFarms service. That is the result of the VNet integration.

You can also see the subnet has service endpoints configured for Cosmos DB. That is the result of the Cosmos DB configuration below:

Service endpoint config in Cosmos DB

In Cosmos DB, an existing virtual network was added. I did not enable the Accept connections from within public Azure datacenters option.

When you remove the service endpoint and you run the Azure Function, the following error is thrown:

Unable to proceed with the request. Please check the authorization claims to ensure the required permissions to process the request. ActivityId: 03b2c11f-2b21-44c9-ab44-61b4864539fe, Microsoft.Azure.Documents.Common/2.2.0.0, Windows/10.0.14393 documentdb-netcore-sdk/2.2.0

Does it work from a VM in the default subnet?

If all went well, I should be able to call the Azure Function from the virtual machine in the default subnet. Let’s try with curl:

Yes, itsme!

The name field in the first document is set to itsme so it worked! Great, the function can be called from the default subnet. In case you are wondering about the use of -p in the ssh command: this virtual machine sat behind an Azure Firewall and the VM ssh port was exposed via a DNAT rule over a random port.

From another location, the following error is shown (wrapped around some HTML but this is the main error):

Error 403 - This web app is stopped

Conclusion

With virtual network service endpoints now available for most Azure PaaS (platform as a service) components, you can ensure those services are only accessed from intended locations. In this example, you saw how to secure access to Azure Functions and Cosmos DB. Service endpoints combined with the App Service VNet integration make it straightforward to secure a Function App end-to-end.

Querying Postgres with GraphQL

I wanted a quick and easy way to build an API that retrieves the ten latest events from a stream of data sent to a TimescaleDB hypertable. Since such a table can be queried by any means supported by Postgres, I decided to use Postgraphile, which automatically provides a GraphQL server for a database.

If you have Node.js installed, just run the following command:

npm install -g postgraphile

Then run the following command to start the GraphQL server:

postgraphile -c "postgres://USER@SERVER:PASSWORD@SERVER.postgres.database.azure.com/DATABASE?ssl=1" --simple-collections only --enhance-graphiql

Indeed, I am using Azure Database for PostgreSQL. Replace the strings in UPPERCASE with your values. I used simple-collections only to, eh, only use simple collections which makes it, well, simpler. 👏👏👏

Note: the maintainer of Postgraphile provided a link to what simple-collections actually does; take a look there for a more thorough explanation 😉

The result of the above command looks like the screenshot below:

GraphQL Server started

You can now navigate to http://localhost:5000/graphiql to try some GraphQL queries in an interactive environment:

GraphiQL, enhanced with the –enhance-graphiql flag when we started the server

In the Explorer to the left, you can easily click the query together. In this case, that is easy to do since I only want to query a single table an obtain the last ten events for a single device. The resulting query looks like so:

{
allConditionsList(condition: {device: "pg-1"}, orderBy: TIME_DESC, first: 10) {
time
device
temperature
}
}

allConditionsList gets created by the GraphQL server by looking at the tables of the database. Indeed, my database contains a conditions table with time, device, temperature and humidity columns.

To finish off, let’s try to obtain the data with a regular POST method to http://localhost:5000/graphql. This is the command to use:

curl -X POST -H “Content-Type: application/json” -d ‘{“query”:”{\n allConditionsList(condition: {device: \”pg-1\”}, orderBy: TIME_DESC, first: 10) {\n time\n device\n temperature\n }\n}\n”,”variables”:null}’ http://localhost:5000/graphql

Ugly but it works. To be honest, there is some noise in the above command because of the \n escapes. They are the result of me grabbing the body from the network traffic sent by GraphiQL:

Yes, lazy me grabbing the request payload from GraphiQL and not cleaning it up 😉

There is much, much, much more you can do with GraphQL in general and PostGraphile in particular but this was all I needed for now. Hopefully this can help you if you have to throw something together quickly. In a production setting, there is of course much more to think about: hosting the API (preferably in a container), authentication, authorization, performance, etc…

Improving an Azure Function that writes IoT Hub data to TimescaleDB

In an earlier post, I used an Azure Function to write data from IoT Hub to a TimescaleDB hypertable on PostgreSQL. Although that function works for demo purposes, there are several issues. Two of those issues will be addressed in this post:

  1. the INSERT INTO statement used the NOW() function instead of the enqueuedTimeUtc field; that field is provided by IoT Hub and represents the time the message was enqueued
  2. the INSERT INTO query does not use upsert functionality; if for some reason you need to process the IoT Hub data again, you will end up with duplicate data; you code should be idempotent

Using enqueuedTimeUtc

Using the time the event was enqueued means we need to retrieve that field from the message that our Azure Function receives. The Azure Function receives outside information via two parameters: context and eventHubMessage. The enqueuedTimeUtc field is retrieved via the context variable: context.bindingData.enqueuedTimeUtc.

In the INSERT INTO statement, we need to use TIMESTAMP ‘UCT time’. In JavaScript, that results in the following:

'insert into conditions(time, device, temperature, humidity) values(TIMESTAMP \'' + context.bindingData.enqueuedTimeUtc + '\',\'' + eventHubMessage.device + '\' ...

Using upsert functionality

Before adding upsert functionality, add a unique constraint to the hypertable like so (via pgAdmin):

CREATE UNIQUE INDEX on conditions (time, device); 

It needs to be on time and device because the time field on its own is not guaranteed to be unique. Now modify the INSERT INTO statement like so:

'insert into conditions(time, device, temperature, humidity) values(TIMESTAMP \'' + context.bindingData.enqueuedTimeUtc + '\',\'' + eventHubMessage.device + '\',' + eventHubMessage.temperature + ',' + eventHubMessage.humidity + ') ON CONFLICT DO NOTHING'; 

Notice the ON CONFLICT clause? When any constraint is violated, we do nothing. We do not add or modify data, we leave it all as it was.

The full Azure Function code is below:

Azure Function code with IoT Hub enqueuedTimeUtc and upsert

Conclusion

The above code is a little bit better already. We are not quite there yet but the two changes make sure that the date of the event is correct and independent from when the actual processing is done. By adding the constraint and upsert functionality, we make sure we do not end up with duplicate data when we reprocess data from IoT Hub.

Hosting an Angular app in Kubernetes

We recently had to deploy an Angular application to Kubernetes in three different environments: development, acceptance and production. The application is not accessed via the browser directly. Instead, it’s accessed via a Microsoft Office add-in.

The next sections will provide you with some tips to make this work. In practice, I do not recommend hosting static sites in Kubernetes. Instead, host such sites in a storage account with a CDN or use Azure FrontDoor.

Build and release pipelines

We keep our build and release pipelines as simple as possible. The build pipeline builds and pushes a Docker image and creates a Helm package:

Build pipeline

The Helm Package task merely packages the Helm chart in the linked git repository in a .tgz file. The .tgz file is published as an artifact, to be picked up by the release pipeline.

The release pipeline simply uses the helm upgrade command via a Helm task provided by Azure DevOps:

Release pipeline

Before we continue: these build and release steps actually just build an image to use as an initContainer in a Kubernetes pod. Why? Read on… 😉

initContainer

Although we build the Angular app in the build pipeline, we actually don’t use the build output. We merely build the app provisionally to cancel the build and subsequent release when there is an error during the Angular build.

In the release pipeline, we again build the Angular app after we updated environment.prod.ts to match the release environment. First read up on the use of environment.ts files to understand their use in an Angular app.

In the development environment for instance, we need to update the environment.prod.ts file with URLs that match the development environment URLs before we build:

export const environment = {
production: true,
apiUrl: '#{apiUrl}#',
adUrl: '#{adUrl}#',
};

The actual update is done by a shell script with trusty old sed:

#!/bin/bash

cd /app/src/environments
sed -i "s|#{apiUrl}#|$apiUrl|g" environment.prod.ts
sed -i "s|#{adUrl}#|$adUrl|g" environment.prod.ts

mkdir /usr/share/nginx/html/addin -p

npm install typescript@">=2.4.2 <2.7"
npm run build -- --output-path=/app/dist/out --configuration production --aot

cp /app/dist/out/* /usr/share/nginx/html/addin -r

The shell script expects environment variables $apiUrl and $adUrl to be set. After environment.prod.ts is updated, we build the Angular app with the correct settings for apiUrl and adUrl to end up in the transpiled and minified output.

The actual build happens in a Kubernetes initContainer. We build the initContainer in the Azure DevOps build pipeline. We don’t build the final container because that is just default nginx hosting static content.

Let’s look at the template in the Helm chart (just the initContainers section):

initContainers:
- name: officeaddin-build
image: {{ .Values.images.officeaddin }}
command: ['/bin/bash', '/app/src/deploy.sh']
env:
- name: apiUrl
value: {{ .Values.env.apiUrl | quote }}
- name: adUrl
value: {{ .Values.env.adUrl | quote }}
volumeMounts:
- name: officeaddin-files
mountPath: /usr/share/nginx/html

In the above YAML, we can identify the following:

  • image: set by the release pipeline via a Helm parameter; the image tag is retrieved from the build pipeline via $(Build.BuildId)
  • command: the deploy.sh Bash script as discussed above; it is copied to the image during the build phase via the Dockerfile
  • environment variables (env): inserted via a Helm parameter in the release pipeline; for instance env.apiUrl=$(apiUrl) where $(apiUrl) is an Azure DevOps variable
  • volumeMounts: in another section of the YAML file, an emptyDir volume called officeaddin-files is created; that volume is mounted on the initContainer as /usr/share/nginx/html; deploy.sh actually copies the Angular build output to that location so the files end up in the volume; later, we can map that volume to the nginx container that hosts the website

After the initContainer successfully builds and copies the output, the main nginx container can start. Here is the Helm YAML (with some stuff left out for brevity):

containers:
- name: officeaddin
image: nginx
ports:
- name: http
containerPort: {{ .Values.service.port}}
volumeMounts:
- name: officeaddin-files
mountPath: /usr/share/nginx/html
- name: nginx-conf
readOnly: true
mountPath: /etc/nginx/conf.d

The officeaddin-files volume with the build output from the initContainer is mounted on /usr/share/nginx/html, which is where nginx expects your files by default.

Nginx config for Angular

The default nginx config will not work. That is the reason you see an additional volume being mounted. The volume actually mounts a configMap on /etc/nginx/conf.d. Here is the configMap:

apiVersion: v1
kind: ConfigMap
metadata:
name: nginx-conf
data:
default.conf: |
server {
server_name addin;

root /usr/share/nginx/html ;

location / {
try_files $uri $uri/ /addin/index.html?$args;
}
}

The above configMap, combined with the volumeMount, results in a file /etc/nginx/conf.d/default.conf. The default nginx configuration in /etc/nginx/nginx.conf will inlude all files in /etc/nginx/conf.d. The nginx configuration in that file maps all requests to /addin/index.html, which is exactly what we want for an Angular app (or React etc…).

Ingress Controller

The Angular app is published via a Kubernetes Ingress Controller. In this case, we use Voyager. We only need to add a rule to the Ingress definition that routes request to the appropriate NodePort service:

rules:
- host: {{ .Values.ingress.url | quote }}
http:
paths:
- path: /addin/
backend:
serviceName: officeaddin-service
servicePort: {{ .Values.service.port }}

Besides the above change, nothing special needs to be done to publish the Angular app.

Building a real-time messaging server in Go

Often, I need a simple real-time server and web interface that shows real-time events. Although there are many options available like socket.io for Node.js or services like Azure SignalR and PubNub, I decided to create a real-time server in Go with a simple web front-end:

The impressive UI of the real-time web front-end

For a real-time server in Go, there are several options. You could use Gorilla WebSocket of which there is an excellent tutorial, and use native WebSockets in the browser. There’s also Glue. However, if you want to use the socket.io client, you can use https://github.com/googollee/go-socket.io. It is an implementation, although not a complete one, of socket.io. For production scenarios, I recommend using socket.io with Node.js because it is heavily used, has more features, better documentation, etc…

With that out of the way, let’s take a look at the code. Some things to note in advance:

  • the code uses the concept of rooms (as in a chat room); clients can join a room and only see messages for that room; you can use that concept to create a “room” for a device and only subscribe to messages for that device
  • the code use the excellent https://github.com/mholt/certmagic to enable https via a Let’s Encrypt certificate (DNS-01 verification)
  • the code uses Redis as the back-end; applications send messages to Redis via a PubSub channel; the real-time Go server checks for messages via a subscription to one or more Redis channels

The code is over at https://github.com/gbaeke/realtime-go.

Server

Let’s start with the imports. Naturally we need Redis support, the actual go-socket.io packages and certmagic. The cloudflare package is needed because my domain baeke.info is managed by CloudFlare. The package gives certmagic the ability to create the verification record that Let’s Encrypt will check before issuing the certificate:

import (
"log"
"net/http"
"os"

"github.com/go-redis/redis"
socketio "github.com/googollee/go-socket.io"
"github.com/mholt/certmagic"
"github.com/xenolf/lego/providers/dns/cloudflare"
)

Next, the code checks if the RTHOST environment variable is set. RTHOST should contain the hostname you request the certificate for (e.g. rt.baeke.info).

Let’s check the block of code that sets up the Redis connection.

// redis connection
client := redis.NewClient(&redis.Options{
Addr: getEnv("REDISHOST", "localhost:6379"),
})

// subscribe to all channels
pubsub := client.PSubscribe("*")
_, err := pubsub.Receive()
if err != nil {
panic(err)
}

// messages received on a Go channel
ch := pubsub.Channel()

First, we create a new Redis client. We either use the address in the REDISHOST environment variable or default to localhost:6379. I will later run this server on Azure Container Instances (ACI) in a multi-container setup that also includes Redis.

With the call to PSubscribe, a pattern subscribe is used to subscribe to all PubSub channels (*). If the subscribe succeeds, a Go channel is setup to actually receive messages on.

Now that the Redis connection is configured, let’s turn to socket.io:

server, err := socketio.NewServer(nil)
if err != nil {
log.Fatal(err)
}

server.On("connection", func(so socketio.Socket) {
log.Printf("New connection from %s ", so.Id())

so.On("channel", func(channel string) {
log.Printf("%s joins channel %s\n", so.Id(), channel)
so.Join(channel)
})

so.On("disconnection", func() {
log.Printf("disconnect from %s\n", so.Id())
})
})

The above code is pretty simple. We create a new socket.io server and subsequently setup event handlers for the following events:

  • connection: code that runs when a web client connects; gives us the socket the client connects on which is further used by the channel and disconnection handler
  • channel: this handler runs when a client sends a message of the chosen type channel; the channel contains the name of the socket.io room to join; this is used by the client to indicate what messages to show (e.g. just for device01); in the browser, the client sends a channel message that contains the text “device01”
  • disconnection: code to run when the client disconnects from the socket

Naturally, something crucial is missing. We need to check Redis for messages in Redis channels and broadcast them to matching socket.io “channels”. This is done in a Go routine that runs concurrently with the main code:

 go func(srv *socketio.Server) {
   for msg := range ch {
      log.Println(msg.Channel, msg.Payload)
      srv.BroadcastTo(msg.Channel, "message", msg.Payload)
   }
 }(server)

The anonymous function accepts a parameter of type socketio.Server. We use the BroadcastTo method of socketio.Server to broadcast messages arriving on the Redis PubSub channels to matching socket.io channels. Note that we send a message of type “message” so the client will have to check for “message” coming in as well. Below is a snippet of client-side code that does that. It adds messages to the messages array defined on the Vue.js app:

socket.on('message', function(msg){
app.messages.push(msg)
}

The rest of the server code basically configures certmagic to request the Let’s Encrypt certificate and sets up the http handlers for the static web client and the socket.io server:

// certificate magic
certmagic.Agreed = true
certmagic.CA = certmagic.LetsEncryptStagingCA

cloudflare, err := cloudflare.NewDNSProvider()
if err != nil {
log.Fatal(err)
}

certmagic.DNSProvider = cloudflare

mux := http.NewServeMux()
mux.Handle("/socket.io/", server)
mux.Handle("/", http.FileServer(http.Dir("./assets")))

certmagic.HTTPS([]string{rthost}, mux)

Let’s try it out! The GitHub repository contains a file called multi.yaml, which deploys both the socket.io server and Redis to Azure Container Instances. The following images are used:

  • gbaeke/realtime-go-le: built with this Dockerfile; the image has a size of merely 14MB
  • redis: the official Redis image

To make it work, you will need to update the environment variables in multi.yaml with the domain name and your CloudFlare credentials. If you do not use CloudFlare, you can use one of the other providers. If you want to use the Let’s Encrypt production CA, you will have to change the code, rebuild the container, store it in your registry and modify multi.yaml accordingly.

In Azure Container Instances, the following is shown:

socket.io and Redis container in ACI

To test the setup, I can send a message with redis-cli, from a console to the realtime-redis container:

Testing with redis-cli in the Redis container

You should be aware that using CertMagic with ephemeral storage is NOT a good idea due to potential Let’s Encrypt rate limiting. You should store the requested certificates in persistent storage like an Azure File Share and mount it at /.local/share/certmagic!

Client

The client is a Vue.js app. It was not created with the Vue cli so it just grabs the Vue.js library from the content delivery network (CDN) and has all logic in a single page. The socket.io library (v1.3.7) is also pulled from the CDN. The socket.io client code is kept at a minimum for demonstration purposes:

 var socket = io();
socket.emit('channel','device01');
socket.on('message', function(msg){
app.messages.push(msg)
})

When the page loads, the client emits a channel message to the server with a payload of device01. As you have seen in the server section, the server reacts to this message by joining this client to a socket.io room, in this case with name device01.

Whenever the client receives a message from the server, it adds the message to the messages array which is bound to a list item (li) with a v-for directive.

Surprisingly easy no? With a few lines of code you have a fully functional real-time messaging solution!

Infrastructure as Code: exploring Pulumi

Image: from the Pulumi website

In my Twitter feed, I often come across Pulumi so I decided to try it out. Pulumi is an Infrastructure as Code solution that allows you to use familiar development languages such as JavaScript, Python and Go. The idea is that you define your infrastructure in the language that you prefer, versus some domain specific language. When ready, you merely use pulumi up to deploy your resources (and pulumi update, pulumi destroy, etc…). The screenshot below shows the deployment of an Azure resource group, storage account, file share and a container group on Azure Container Instances. The file share is mapped as a volume to one of the containers in the container group:

Deploying infrastructure with pulumi up

Installation is extremely straightforward. I chose to write the code in JavaScript as I had all the tools already installed on my Windows box. It is also more polished than the Go option (for now). I installed Pulumi per their instructions over at https://pulumi.io/quickstart/install.html.

Next, I used their cloud console to create a new project. Eventually, you will need to run a pulumi new command on your local machine. The cloud console will provide you with the command to use which is handy when you are just getting started. The cloud console provides a great overview of all your activities:

Nice and green (because I did not include the failed ones 😉)

In Resources, you can obtain a graph of the deployed resources:

Don’t you just love pretty graphs like this?

Let’s take a look at the code. The complete code is in the following gist: https://gist.github.com/gbaeke/30ae42dd10836881e7d5410743e4897c.

Resource group, storage account and share

The above code creates the resource group, storage account and file share. It is so straightforward that there is no need to explain it, especially if you know how it works with ARM. The simplicity of just referring to properties of resources you just created is awesome!

Next, we create a container group with two containers:

Creating the container group

If you have ever created a container group with a YAML file or ARM template, the above code will be very familiar. It defines a DNS label for the group and sets the type to Linux (ACI also supports Windows). Then two containers are added. The realtime-go container uses CertMagic to obtain Let’s Encrypt certificates. The certificates should be stored in persistent storage and that is what the Azure File Share is used for. It is mounted on /.local/share/certmagic because that is where the files will be placed in a scratch container.

I did run into a small issue with the container group. The realtime-go container should expose both port 80 and 443 but the port setting is a single numeric value. In YAML or ARM, multiple ports can be specified which makes total sense. Pulumi has another cross-cloud option to deploy containers which might do the trick.

All in all, I am pleasantly surprised with Pulumi. It’s definitely worth a more in-depth investigation!