Communication between microservices in Kubernetes with Go Micro

In this post, we continue the story we started with two earlier posts:

In the previous post, I described a very simple service written with the help of Go Micro. It exposes an RPC call Get that retrieves a device from a list of devices. Now we want a simple data service we can call via a RESTful interface like so: http://name_or_ip/data/device1. Note that no actual data is returned by the call. We just return true if the device exists and false if it does not.

The code for the “data” service can be found here: https://github.com/gbaeke/go-data/blob/master/main.go. The code is again very simply. To expose the RESTful interface, I used Gorilla. In the handler for the route /data/{device}, we call the Device service using a Go Micro client. Because the client is configured to use Kubernetes as the registry, it will look up where the Device service lives and call it. Let’s take a look at the code to call the Device service.

It starts with declaring a variable of type device.DevSvcClient which is defined in the generated code by protoc (see code for the device service here):

// devSvc is the service for the client
var (
	cl device.DevSvcClient
)

In the init() function, the client is created and configured to call the go.micro.srv.device service:

func init() {
	// make sure flags are processed
	cmd.Init()

	// initialise a default client for device service
	cl = device.NewDevSvcClient("go.micro.srv.device", client.DefaultClient)

}

In the route handler, the device name is extracted from the URL and then we call another function that returns true if the device exists and is active.

deviceActive(&device.DeviceName{Name: deviceName})

The deviceActive function looks like:

func deviceActive(d *device.DeviceName) bool {
	//call Get method from devSvcClient to obtain the device
	fmt.Println("Getting device", d.Name)
	rsp, err := cl.Get(context.TODO(), d)
	if err != nil {
		fmt.Println(err)
		return false
	}

	return rsp.Active
}

The above function expects a pointer to a DeviceName struct which is again defined by the protoc generated code used by the Device service. As you can see, calling the Get method is trivial. Behind the scenes, the client code locates the Device service in Kubernetes and does all the serialization/deserialization work to and from a binary format.

After the service is deployed in Kubernetes (see this post), we can check if it works using:

curl http://ip_of_loadbalancer/data/device1

The above should return the following:

Device active:  true
Oh and, no data for you!

I told you the service returned no data! 🙂

We now have two services that communicate using RPC in a Kubernetes cluster. Writing RESTful APIs and putting them in front of the RPC services is easy enough but something is off though! We don’t want to deploy many services that offer a RESTful API and then expose them using multiple external IPs because that’s just cumbersome. What we do want is to use the API Gateway pattern. In a future post, I will describe how to use Go Micro’s API gateway and an API service that exposes the device service to the outside world using a RESTful interface. Quite the mouthful… Stay tuned!

Microservices on Kubernetes: a simple example in Go

In the previous post, Getting started with Kubernetes on Azure, we talked about creating a Kubernetes cluster and deploying a couple of services. There are basically two services:

  • Data: a service that exposes an endpoint to pick up data for an IoT device; you call it with http://service_endpoint:8080/data/devicename
  • Device: a service that can be used by the Data API to check if a device exists; if the device exists you will see that in the response

When you call the Data service, it will call the Device service using gRPC, using HTTP as the transport protocol. You define the service using Protocol Buffers. gRPC works across languages and platforms, so I could have implemented each service using a different language like Go for the Device service and Node.js for the Data service. In this example, I decided to use Go in both cases and use Go Micro, a pluggable RPC framework for microservices. Go Micro uses gRPC and protocol buffers under the hood with changes specific to Go Micro.

Ok, enough with the talk, let’s take a look how it is done. The Device service is kept extremely simple for an abvious reason: I just started with Go Micro and then it is best to start with something simple. I do expect you know a bit of Go from here on out. All the code can be found at https://github.com/gbaeke/go-device.

Lets start with the definition of Protocol Buffers, found in proto/device.proto:

syntax = "proto3";

service DevSvc {
    rpc Get(DeviceName) returns (Device) {}
}

message DeviceName {
    string name = 1;
}

message Device {
    string name = 1;
    bool active = 2;
}

We define one RPC call here that expects a DeviceName message as input and returns a Device message. Simple enough but this does not get us very far. To actually use this in Go (or another supported language), we will generate some code from the above definition. You need a couple of things to do that though:

  • protoc compiler: download from Github  for your platform
  • protobuf plugins for code generation for Go Micro: run go get github.com/micro/protobuf/{proto,protoc-gen-go} (if you have issues, use 2 gets, one for proto and one for protoc-gen-go)

To actually compile the proto file, use the following command:

protoc --go_out=plugins=micro:. device.proto

That compiles device.proto to device.pb.go with help from the micro plugin. You can check the generated code here. Among other things, there are Go structs for the DeviceName and Device message plus several methods you can call on these structs such as Reset() and String().

Now for main.go! You’ll need several imports: for the generated code but also for the dependencies to build the service with Go Micro. If you check the code, you will also find the following import:

_ "github.com/micro/go-plugins/registry/kubernetes"

As stated above, Go Micro is a pluggable RPC framework. Out of the box, a microservice written with Go Micro will try to register itself with Consul on localhost for service discovery and configuration. We could run the Consul service in Kubernetes but Kubernetes supports service registration natively. Kubernetes support is something you add with the import above. That is not enough though! You still need to tell Go Micro to use Kubernetes as the registry, either with the —registry command line parameter or with an environment variable MICRO_REGISTRY. Check https://github.com/gbaeke/go-device/blob/master/go-device-dep.yaml file where that environment variable is set. Besides Consul and Kubernetes, there are other alternatives. One of them is multicast DNS (mdns) which is handy when you are testing services on your local machine and you don’t have something like Consul running.

If you want to check the information that is registered, you can do the following (after running kubectl proxy --port=8080):

curl http://localhost:8080/api/v1/pods | grep micro

Each pod will have an annotation with key micro.mu/service-<servicename> with information about the service such as its name, IP address, port, and much more.

Now really over to main.go, which is pretty self explanatory. There’s a struct called DevSvc which has a field called devs which holds the map of strings to Device structs. The DevSvc actually defines the service and you write the RPC calls as methods of that struct. Check out the following code snippet:

// DevSvc defines the service
type DevSvc struct {
	devs map[string]*device.Device
}
func (d *DevSvc) Get(ctx context.Context, req *device.DeviceName, rsp *device.Device) error {
	device, ok := d.devs[req.Name]
	if !ok {
		fmt.Println("Device does not exist")
		return nil
	}

	fmt.Println("Will respond with ", device)

	// this also works
	rsp.Name = device.Name
	rsp.Active = device.Active

	return nil
}

The Get function implements what was defined in the .proto file earlier and uses pointers to a DeviceName struct as input and a pointer to a Device struct as output. The code itself is of course trivial and just looks up a device in the map and returns it with rsp.

Of course, this handler needs to be registered and this happens in the main() function (besides setting up the service and implementing a custom flag):

// register handler and initialise devs map with a list of devices
device.RegisterDevSvcHandler(service.Server(), &DevSvc{devs: LoadDevices()})

If you want to test the service and call it (e.g. on the local machine) then clone the repository (or get it) and run the server as follows:

go run main.go --registry=mdns

In another terminal, run:

go run main.go --registry=mdns --run_client

When you run the code with the run_client option, the runClient function is called which looks like:

func runClient(service micro.Service) {
	// Create new client to call DevSvc service
	DevClient := device.NewDevSvcClient("go.micro.srv.device", service.Client())

	// Call Get to get a device
	rsp, err := DevClient.Get(context.TODO(), &device.DeviceName{Name: "device2"})
	if err != nil {
		fmt.Println(err)
		return
	}

	// Print response
	fmt.Println("Response: ", rsp)
}

This again shows the power of using a framework like Go Micro: you create a client for the DevSvc service and then simply perform the remote procedure call with the Get method, passing in a DeviceName struct with the Name field set to the device you want to check. The client uses the service registry to know where and how to connect. All the serialization and deserialization is handled for you as well using protocol buffers.

So great, you now have a little bit more information about the Device service and you know how to deploy it to Kubernetes. In another post, we’ll see how the Data service works and explore some other options to write that service.

Control Sonos with an easy to use API

In an earlier post, Controlling Sonos from a Particle Photon, we created a small app to do just that. The app itself contained some C++ code to interact with a Sonos player on your network. Although the code works, it does not provide you with full control over your Sonos player and it’s tedious to work with.

Wouldn’t it be great if you had an API at your disposal that is both easy to use and powerful? And even better, has Sonos discovery built-in so that there is no need to target Sonos players by their IP? Well, look no further as something like that exists: https://github.com/jishi/node-sonos-http-api. The Sonos HTTP API is written in Node.js which makes it easy to run anywhere!

And I do mean ANYWHERE!!! I wanted to run the API as a Docker container on my Raspberry Pi 3, which is very easy to do. Here are the basic steps I took to configure the Raspberry Pi:

With Docker up and running, I created a Dockerfile and built the image. Here is the Dockerfile:

FROM hypriot/rpi-node
RUN git clone -q https://github.com/jishi/node-sonos-http-api.git
WORKDIR node-sonos-http-api
RUN npm install > /dev/null
EXPOSE 5005
CMD [“npm”,”start”]

Note: a Raspberry Pi uses an ARM architecture which means you need to use ARM compatible images; above I used hypriot/rpi-node (see https://hub.docker.com/r/hypriot/rpi-node/)

Note 2: I’m sure there already is a Docker image for this Sonos API; I just decided to build it myself

After building the image, I tagged it sonosctrl (using docker tag). You will see the tag of this image coming back later when we run the container.

Because the API server needs to discover the Sonos devices on the network, you should not use the Docker bridge network. The command to run the container from the sonosctrl image:

docker run –net=host –restart=always -d –name SonosController sonosctrl

Now you should have a container called SonosController up and running that accepts API requests to control your Sonos:

image

Note: you also see Portainer running above; I use that to get an easy GUI for Docker on this Pi

To actually test the API, use Postman or cURL. From Postman:

image

Above, you see a request to load the Sonos playlist called “car” on players in “Living Room”. The request was successful as can be seen in the response. This command will also start playing songs from the playlist right away. If you want to pause playing:

image

Great! We have a Sonos API running on a Raspberry Pi as a Docker container with a few simple steps. We can now more easily send commands to Sonos from devices like the Particle Photon or an Arduino. I will show you how to do that from a Particle Photon using the HttpClient library in a later article.