Docker without Docker: a look at Podman

I have been working with Docker for quite some time. More and more however, I see people switching to tools like Podman and Buildah and decided to give that a go.

I installed a virtual machine in Azure with the following Azure CLI command:

az vm create \
  	--resource-group RESOURCEGROUP \
  	--name VMNAME \
  	--image UbuntuLTS \
	--authentication-type password \
  	--admin-username azureuser \
  	--admin-password PASSWORD \
	--size Standard_B2ms

Just replace RESOURCEGROUP, VMNAME and PASSWORD with the values you want to use and you are good to go. Note that the above command results in Ubuntu 18.04 at the time of writing.

SSH into that VM for the following steps.

Installing Podman

Installation of Podman is easy enough. The commands below do the trick:

. /etc/os-release
echo "deb https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/stable/xUbuntu_${VERSION_ID}/ /" | sudo tee /etc/apt/sources.list.d/devel:kubic:libcontainers:stable.list
curl -L https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/stable/xUbuntu_${VERSION_ID}/Release.key | sudo apt-key add -
sudo apt-get update
sudo apt-get -y upgrade 
sudo apt-get -y install podman

You can find more information at https://podman.io/getting-started/installation.

Where Docker uses a client/server model, with a privileged Docker daemon and a docker client that communicates with it, Podman uses a fork/exec model. The container process is a child of the Podman process. This also means you do not require root to run a container which is great from a security and auditing perspective.

You can now just use the podman command. It supports the same arguments as the docker command. If you want, you can even create a docker alias for the podman command.

To check if everything is working, run the following command:

podman run hello-world

It will pull down the hello-world image from Docker Hub and display a message.

I wanted to start my gbaeke/nasnet container with podman, using the following command:

podman run  -p 80:9090 -d gbaeke/nasnet

Of course, the above command will fail. I am not running as root, which means I cannot bind a process to a port below 1024. There are ways to fix that but I changed the command to:

podman run  -p 9090:9090 -d gbaeke/nasnet

The gbaeke/nasnet container is large, close to 3 GB. Pulling the container from Docker Hub went fast but Podman took a very long time during the Storing signatures phase. While the command was running, I checked disk space on the VM with df and noticed that the machine’s disk was quickly filling up.

On WSL2 (Windows Subsystem for Linux), I did not have trouble with pulling large images. With the docker info command, I found that it was using overlay2 as the storage driver:

Docker on WSL2 uses overlay2

You can find more information about Docker and overlay2, see https://docs.docker.com/storage/storagedriver/overlayfs-driver/.

With podman, run podman info to check the storage driver podman uses. Look for graphDriverName in the output. In my case, podman used vfs. Although vfs is well supported and runs anywhere, it does full copies of layers (represented by directories on your filesystem) in the image which results in using a lot of diskspace. If the disk is not super fast, this will result in long wait times when pulling an image and waste of disk space.

Without getting bogged down in the specifics of the storage drivers and their pros and cons, I decided to switch Podman from vfs to fuse-overlayfs. Fuse stands for Filesystem in Userspace, so fuse-overlayfs is the implementation of overlayfs in userspace (using FUSE). It supports deduplication of layers which will result in less consumption of disk space. This should be very noticeable when pulling a large image.

IMPORTANT: remove the containers folder in ~/.local/share to clear out container storage before installing overlayfs. Use the command below;

rm -rf ~/.local/share/containers

Installing fuse-overlayfs

The installation instructions are at https://github.com/containers/fuse-overlayfs. I needed to use the static build because I am running Ubuntu 18.04. On newer versions of Ubuntu, you can use apt install libfuse3-dev.

It’s of no use here to repeat the static build steps. Just head over to the GitHub repo and follow the steps. When asked to clone the git repo, use the following command:

git clone https://github.com/containers/fuse-overlayfs.git

The final step in the instructions is to copy fuse-overlayfs (which was just built with buildah) to /usr/bin.

If you now run podman info, the graphDrivername should be overlay. There’s nothing you need to do to make that happen:

overlay storage driver with /usr/bin/fuse-overlayfs as the executable

When you now run the gbaeke/nasnet container, or any sufficiently large container, the process should be much smoother. I can still take a couple of minutes though. Note that at the end, your output will be somewhat like below:

Output from podman run -p 9090:9090 -d gbaeke/nasnet

Now you can run podman ps and you should see the running container:

gbaeke/nasnet container is running

Go to http://localhost:9090 and you should see the UI. Go ahead and classify an image! 😉

Conclusion

Installing and using Podman is easy, especially if you are familiar with Docker somewhat. I did have trouble with performance and disk storage with large images but that can be fixed by swapping out vfs with something like overlayfs. Be aware that there are many other options and that it is quite complex under the hood. But with the above steps, you should be good to go.

Will I use podman from now on? Probably not as Docker provides me all I need for now and a lot of tools I use are dependent on it.