Running a GoCV application in a container

In earlier posts (like here and here) I mentioned GoCV. GoCV allows you to use the popular OpenCV library from your Go programs. To avoid installing OpenCV and having to compile it from source, a container that runs your GoCV app can be beneficial. This post provides information about doing just that.

The following GitHub repository, https://github.com/denismakogon/gocv-alpine, contains all you need to get started. It’s for OpenCV 3.4.2 so you will run into issues when you want to use OpenCV 4.0. The pull request, https://github.com/denismakogon/gocv-alpine/pull/7, contains the update to 4.0 but it has not been merged yet. I used the proposed changes in the pull request to build two containers:

  • the build container: gbaeke/gocv-4.0.0-build
  • the run container: gbaeke/gocv-4.0.0-run

They are over on Docker Hub, ready for use. To actually use the above images in a typical two-step build, I used the following Dockerfile:

FROM gbaeke/gocv-4.0.0-build as build       
RUN go get -u -d gocv.io/x/gocv
RUN go get -u -d github.com/disintegration/imaging
RUN go get -u -d github.com/gbaeke/emotion
RUN cd $GOPATH/src/github.com/gbaeke/emotion && go build -o $GOPATH/bin/emo ./main.go

FROM gbaeke/gocv-4.0.0-run
COPY --from=build /go/bin/emo /emo
ADD haarcascade_frontalface_default.xml /

ENTRYPOINT ["/emo"]

The above Dockerfile uses the webcam emotion detection program from https://github.com/gbaeke/emotion. To run it on a Linux system, use the following command:

docker run -it --rm --device=/dev/video0 --env SCOREURI="YOUR-SCORE-URI" --env VIDEO=0 gbaeke/emo

The SCOREURI environment variable needs to refer to the score URI offered by the ONNX FER+ container as discussed in Detecting Emotions with FER+. With VIDEO=0 the GUI window that shows the webcam video stream is turned off (required). Detected emotions will be logged to the console.

To be able to use the actual webcam of the host, the –device flag is used to map /dev/video0 from the host to the container. That works well on a Linux host and was tested on a laptop running Ubuntu 16.04.

Detecting emotions with FER+

In an earlier post, I discussed classifying images with the ResNet50v2 model. Azure Machine Learning Service was used to create a container image that used the ONNX ResNet50v2 model and the ONNX Runtime for scoring.

Continuing on that theme, I created a container image that uses the ONNX FER+ model that can detect emotions in an image. The container image also uses the ONNX Runtime for scoring.

You might wonder why you would want to detect emotions this way when there are many services available that can do this for you with a simple API call! You could use Microsoft’s Face API or Amazon’s Rekognition for example. While those services are easy to use and provide additional features, they do come at a cost. If all you need is basic detection of emotions, using this FER+ container is sufficient and cost effective.

Azure Face API (image from Microsoft website)

A notebook to create the image and deploy a container to Azure Container Instances (ACI) can be found here. The notebook uses the Azure Machine Learning SDK to register the model to an Azure Machine Learning workspace, build a container image from that model and deploy the container to ACI. The scoring script score.py is shown below.

score.py

The model expects an 64×64 gray scale image of a face in an array with the following dimensions: [1][1][64][64]. The output is JSON with a results array that contains the probabilities for each emotion and a time field with the inference time.

The emotion probabilities are in this order:

0: "neutral", 1: "happy", 2: "surprise", 3: "sadness", 4: "anger", 5: "disgust", 6: "fear", 7: "contempt

To actually capture the emotions, I wrote a small demo program in Go that uses OpenCV (via GoCV). You can find it on GitHub: https://github.com/gbaeke/emotion. You will need to install OpenCV and GoCV. Find the instructions here: https://gocv.io/getting-started/linux/. There are similar instructions for Mac and Windows but I have not tried those

The program is still a little rough around the edges but it does the trick. The scoring URI is hard coded to http://localhost:5002/score. With Docker installed, use the following command to install the scoring container:

 docker run -d -p 5002:5001 gbaeke/onnxferplus

Have fun with it!

ResNet50v2 classification in Go with a local container

To quickly go to the code, go here. Otherwise, keep reading…

In a previous blog post, I wrote about classifying images with the ResNet50v2 model from the ONNX Model Zoo. In that post, the container ran on a Kubernetes cluster with GPU nodes. The nodes had an NVIDIA v100 GPU. The actual classification was done with a simple Python script with help from Keras and Numpy. Each inference took around 25 milliseconds.

In this post, we will do two things:

  • run the scoring container (CPU) on a local machine that runs Docker
  • perform the scoring (classification) in Go

Installing the scoring container locally

I pushed the scoring container with the ONNX ResNet50v2 image to the following location: https://cloud.docker.com/u/gbaeke/repository/docker/gbaeke/onnxresnet50v2. Run the container with the following command:

docker run -d -p 5001:5001 gbaeke/onnxresnet50

The container will be pulled and started. The scoring URI is on http://localhost:5001/score.

Note that in the previous post, Azure Machine Learning deployed two containers: the scoring container (the one described above) and a front-end container. In that scenario, the front-end container handles the HTTP POST requests (optionally with SSL) and route the request to the actual scoring container.

The scoring container accepts the same payload as the front-end container. That means it can be used on its own, as we are doing now.

Note that you can also use IoT Edge, as explained in an earlier post. That actually shows how easy it is to push AI models to the edge and use them locally, befitting your business case.

Scoring with Go

To actually classify images, I wrote a small Go program to do just that. Although there are some scientific libraries for Go, they are not really needed in this case. That means we do have to create the 4D tensor payload and interpret the softmax result manually. If you check the code, you will see that is not awfully difficult.

The code can be found in the following GitHub repository: https://github.com/gbaeke/resnet-score.

Remember that this model expects the input as a 4D tensor with the following dimensions:

  • dimension 0: batch (we only send one image here)
  • dimension 1: channels (one for each; RGB)
  • dimension 2: height
  • dimension 3: width

The 4D tensor needs to be serialized to JSON in a field called data. We send that data with HTTP POST to the scoring URI at http://localhost:5001/score.

The response from the container will be JSON with two fields: a result field with the 1000 softmax values and a time field with the inference time. We can use the following two structs for marshaling and unmarshaling

Input and output of the model

Note that this model expects pictures to be scaled to 224 by 224 as reflected by the height and width dimensions of the uint8 array. The rest of the code is summarized below:

  • read the image; the path of the image is passed to the code via the -image command line parameter
  • the image is resized with the github.com/disintegration/imaging package (linear method)
  • the 4D tensor is populated by iterating over all pixels of the image, extracting r,g and b and placing them in the BCHW array; note that the r,g and b values are uint16 and scaled to fit in a uint8
  • construct the input which is a struct of type InputData
  • marshal the InputData struct to JSON
  • POST the JSON to the local scoring URI
  • read the HTTP response and unmarshal the response in a struct of type OutputData
  • find the highest probability in the result and note the index where it was found
  • read the 1000 ImageNet categories from imagenet_class_index.json and marshal the JSON into a map of string arrays
  • print the category using the index with the highest probability and the map

What happens when we score the image below?

What is this thing?

Running the code gives the following result:

$ ./class -image images/cassette.jpg

Highest prob is 0.9981583952903748 at 481 (inference time: 0.3309464454650879 )
Probably [n02978881 cassette

The inference time is 1/3 of a second on my older Linux laptop with a dual-core i7.

Try it yourself by running the container and the class program. Download it from here (Linux).