Azure App Services with Private Link

In one of my videos on my YouTube channel, I discuss Azure App Services with Private Link. The video describes how it works and provides an example of deploying the infrastructure with Bicep. The Bicep templates are on GitHub.

If you want to jump straight to the video, here it is:

In the rest of this blog post, I provide some more background information on the different pieces of the solution.

Azure App Service

Azure App Service is a great way to host web application and APIs on Azure. It’s PaaS (platform as a service), so you do not have to deal with the underlying Windows or Linux servers as they are managed by the platform. I often see AKS (Azure Kubernetes Service) implementations to host just a couple of web APIs and web apps. In most cases, that is overkill and you still have to deal with Kubernetes upgrades, node patching or image replacements, draining and rebooting the nodes, etc… And then I did not even discuss controlling ingress and egress traffic. Even if you standardize on packaging your app in a container, Azure App Service will gladly accept the container and serve it for you.

By default, Azure App Service gives you a public IP address and FQDN (Fully Qualified Domain Name) to reach your app securely over the Internet. The default name ends with azurewebsites.net but you can easily add custom domains and certificates.

Things get a bit more complicated when you want a private IP address for your app, reachable from Azure virtual networks and on-premises networks. One solution is to use an App Service Environment. It provides a fully isolated and dedicated environment to run App Service apps such as web apps and APIs, Docker containers and Functions. You can create an internal ASE which results in an Internal Load Balancer in front of your apps that is configured in a subnet of your choice. There is no need to configure Private Endpoints to make use of Private Link. This is often called native virtual network integration.

At the network level, an App Service Environment v2, works as follows:

External ASE
ASE networking (from Microsoft website)

Looking at the above diagram, an ILB ASE (but also an External ASE) also makes it easy to connect to back-end systems such as on-premises databases. The outbound connection to internal resources originates from an IP in the chosen integration subnet.

The downside to ASE is that its isolated instances (I1, I2, I3) are rather expensive. It also takes a long time to provision an ASE but that is less of an issue. In reality though , I would like to see App Service Environments go away and replaced by “regular” App Services with toggles that give you the options you require. You would just deploy App Services and set the options you require. In any case, native virtual network integration should not depend on dedicated or shared compute. One can only dream right? 😉

Note: App Service Environment v3, in preview at the time of this writing, provides a simplified deployment experience and also costs less. See App Service Environment v3 public preview – Azure App Service

As an alternative to an ASE for a private app, consider a non-ASE App Service that, in production, uses Premium V2 or V3 instances. The question then becomes: “How do you get a private IP address?” That’s where Private Link comes in…

Azure Private Link with App Service

Azure Private Link provides connectivity to Azure services (such as App Service) via a Private Endpoint. The Private Endpoint creates a virtual network interface card (NIC) on a subnet of your choice. Connections to the NICs IP address end up at the Private Link service the Private Endpoint is connected to. Below is an example with Azure SQL Database where one Private Endpoint is mapped, via Azure Private Link, to one database. The other databases are not reachable via the endpoint.

Private Endpoint connected to Azure SQL Database (PaaS) via Private Link (source: Microsoft website)

To create a regular App Service that is accessible via a private IP, we can do the same thing:

  • create a private endpoint in the subnet of your choice
  • connect the private endpoint to your App Service using Private Link

Both actions can be performed at the same time from the portal. In the Networking section of your App Service, click Configure your private endpoint connections. You will see the following screen:

Private Endpoint connection of App Service

Now click Add to create the Private Endpoint:

Creating the private endpoint

The above creates the private endpoint in the default subnet of the selected VNET. When the creation is finished, the private endpoint will be connected to App Service and automatically approved. There are scenarios, such as connecting private endpoints from other tenants, that require you to approve the connection first:

Automatically approved connection

When you click on the private endpoint, you will see the subnet and NIC that was created:

Private Endpoint

From the above, you can click the link to the network interface (NIC):

Network interface created by the private endpoint

Note that when your delete the Private Endpoint, the interface gets deleted as well.

Great! Now we have an IP address that we can use to reach the App Service. If you use the default name of the web app, in my case https://web-geba.azurewebsites.net, you will get:

Oops, no access on the public name (resolves to public IP)

Indeed, when you enable Private Link on App Service, you cannot access the website using its public IP. To solve this, you will need to do something at the DNS level. For the default domain, azurewebsites.net, it is recommended to use Azure Private DNS. During the creation of my Private Endpoint, I turned on that feature which resulted in:

Private DNS Zone for privatelink.azurewebsites.net

You might wonder why this is a private DNS zone for privatelink.azurewebsites.net? From the moment you enable private link on your web app, Microsoft modifies the response to the DNS query for the public name of your app. For example, if the app is web-geba.azurewebsites.net and you query DNS for that name, it will respond with a CNAME of web-geba.privatelink.azurewebsites.net. If that cannot be resolved, you will still get the public IP but that will result in a 403.

In my case, as long as the DNS servers I use can resolve web-geba.privatelink.azurewebsites.net and I can connect to 10.240.0.4, I am good to go. Note however that the DNS story, including Private DNS and your own DNS servers, is a bit more complex that just checking a box! However, that is not the focus of this blogpost so moving on… 😉

Note: you still need to connect to the website using https://web-geba.azurewebsites.net in your browser

Outbound connections to internal resources

One of the features of App Service Environments, is the ability to connect to back-end systems in Azure VNETs or on-premises. That is the result of native VNET integration.

When you enable Private Link on a regular App Service, you do not get that. Private Link only enables private inbound connectivity but does nothing for outbound. You will need to configure something else to make outbound connections from the Web App to resources such as internal SQL Servers work.

In the network configuration of you App Service, there is another option for outbound connectivity to internal resources – VNet integration.

VNET Integration

In the Networking section of App Service, find the VNet integration section and click Click here to configure. From there, you can add a VNet to integrate with. You will need to select a subnet in that VNet for this integration to work:

Outbound connectivity for App Service to Azure VNets

There are quite some things to know when it comes to VNet integration for App Service so be sure to check the docs.

Private Link with Azure Front Door

Often, a web app is made private because you want to put a Web Application Firewall (WAF) in front of the app. Typically, that goal is achieved by putting Azure Application Gateway (AG) with WAF in front of an internal App Services Environment. As as alternative to AG, you can also use virtual appliances such as Barracuda WAF for Azure. This works because the App Services Environment is a first-class citizen of your Azure virtual network.

There are multiple ways to put a WAF in front of a (non-ASE) App Service. You can use Front Door with the App Service as the origin, as long as you restrict direct access to the origin. To that end, App Services support access restrictions.

With Azure Front Door Premium, in preview at the time of this writing (June 2021), you can use Private Link as well. In that case, Azure Front Door creates a private endpoint. You cannot control or see that private endpoint because it is managed by Front Door. Because the private endpoint is not in your tenant, you will need to approve the connection from the private endpoint to your App Service. You can do that in multiple ways. One way is Private Link Center Pending Connections:

Pending Connections

If you check the video at the top of this page, this is shown here.

Conclusion

The combination of Azure networking with App Services Environments (ASE) and “regular” App Services (non-ASE) can be pretty confusing. You have native network integration for ASE, private access with private link and private endpoints for non-ASE, private DNS for private link domains, virtual network service endpoints, VNet outbound configuration for non-ASE etc… Most of the time, when I am asked for the easiest and most cost-effective option for a private web app in PaaS, I go for a regular non-ASE App Service and use Private Link to make the app accessible from the internal network.

Inspecting Web Application Firewall logs

In some of my previous posts, I talked about Azure Front Door and Web Application Firewall policies to protect a workload like one or more APIs running on Kubernetes or App Service. Although I enabled the Web Application Firewall policies, I did not show what happens when the rules are triggered. Let’s take a look at that! 🕶

Before we get started though, take the following diagram into account:

Azure web application firewall
From: https://docs.microsoft.com/en-us/azure/frontdoor/waf-overview

WAF for Front Door is a global solution. You create a WAF policy in the portal or via other means and attach it to a Front Door frontend. Rules are evaluated and acted upon at the edge versus on your application server.

Azure WAF supports custom rules and Azure-managed rule sets (based on OWASP). The custom rules are interesting because they allow you to restrict IP addresses, configure geographic based access control and more.

There’s an additional rule type called bot protection rule as well. At the time of this writing (beginning June 2019) this feature is in public preview. It uses the Microsoft Intelligent Security Graph to do its magic, similarly to Azure Firewall when you enable Threat Intelligence.

WAF Logs

Let’s first use a tool that can scan an endpoint for vulnerabilities to trigger the WAF rules. One such tool is OWASP ZAP, which you need to install on your workstation.

OWASP ZAP tool

Before we check the logs, note we have set the policy to Detection:

WAF policy set to Detection; start with detection to learn what the rules might block in your app

Now let’s take a look at the logs. Use the following query in Log Analytics and modify it for your own host (host_s field):

AzureDiagnostics
| where ResourceType == "FRONTDOORS" and Category == "FrontdoorWebApplicationFirewallLog"
| where action_s == "Block" 
| where host_s == "api.baeke.info"  

The result:

Blocked requests (if the policy were set at Prevention at the global level)

Let’s look at a SQL Injection block:

Typical SQL Injection

The decoded requestUri_s is https://api.baeke.info:443/users?apikey=theapikey’ AND ‘1’=’1′ –. Typical! It was blocked at the edge. This request went via the BRU location.

Like with any Log Analytics query, you can place alerts on log occurrences. You will need to be in the Log Analytics workspace, and not in the Logs section of Azure Front Door:

Conclusion

Azure Web Application Firewall policies for Azure Front Door integrate with Azure Monitor and Log Analytics, like most other Azure services. With some KQL, the query language for Log Analytics, it is straightforward to request the logs and set alerts on them.

Azure Front Door Revisited

A while ago, I wrote a post about Azure Front Door. In that post, I wrote that http to https redirection was not possible. With Azure Front Door being GA, let’s take a look if that is still the case.

In the previous post, I had the following configuration in Front Door Designer:

Azure Front Door Designer

The above configuration exposes a static website hosted in an Azure Storage Acccount (the backend in the backend pool). The custom domain deploy.baeke.info maps to geba.azurefd.net using a CNAME in my CloudFlare hosted domain. The routing rule routeall maps all requests to the backend.

The above configuration does not, however, redirect http://deploy.baeke.info to https://deploy.baeke.info which is clearly not what we want. In order to achieve that goal, the routing rules can be changed. A redirect routing rule looks as follows:

Redirect routing rule (Replace destination host was not required)

The routall rule looks like this:

Routing rule

The routing rule simply routes https://deploy.baeke.info to the azdeploy backend pool which only contains the single static website hosted in a storage account.

The full config looks like this:

Full config in Front Door designer

Although not very useful for this static website, I also added WAF (Web Application Firewall) rules to Azure Front Door. In the Azure Portal, just search for WAF and add a policy. I added a default policy and associated it with this Azure Front Door website:

WAF rules associated with the Azure Front Door frontend

If required, you can enable/disable WAF rules:

Simple Azure AD Authentication in a single page application (SPA)

Adding Azure AD integration to a website is often confusing if you are just getting started. Let’s face it, not everybody has the opportunity to dig deep into such topics. For https://deploy.baeke.info, I wanted to enable Azure AD authentication so that only a select group of users in our AD tenant can call the back-end webhooks exposed by webhookd. The architecture of the application looks like this:

Client to webhook

The process is as follows:

  • Load the client from https://deploy.baeke.info
  • Client obtains a token from Azure Active Directory; the user will have to authenticate; in our case that means that a second factor needs to be provided as well
  • When the user performs an action that invokes a webhook, the call is sent to API Management
  • API Management verifies the token and passes the request to webhookd over https with basic authentication
  • The response is received by API Management which passes it unmodified to the client

I know you are an observing reader that is probably thinking: “why not present the token to webhookd?”. That’s possible but then I did not have a reason to use API Management! 😉

Before we begin you might want to get some background information about what we are going to do. Take a look at this excellent Youtube video that explains topics such a OAuth 2.0 and OpenID Connect in an easy to understand format:

Create an application in Azure AD

The first step is to create a new application registration. You can do this from https://aad.portal.azure.com. In Azure Active Directory, select App registrations or use the new App registrations (Preview) experience.

For single page applications (SPAs), the application type should be Web app / API. As the App ID URI and Home page URL, I used https://deploy.baeke.info.

In my app, a user will authenticate to Azure AD with a Login button. Clicking that button brings the user to a Microsoft hosted page that asks for credentials:

Providing user credentials

Naturally, this implies that the authentication process, when finished, needs to find its way back to the application. In that process, it will also bring along the obtained authentication token. To configure this, specify the Reply URLs. If you also develop on your local machine, include the local URL of the app as well:

Reply URLs of the registered app

For a SPA, you need to set an additional option in the application manifest (via the Manifest button):

"oauth2AllowImplicitFlow": true

This implicit flow is well explained in the above video and also here.

This is basically all you have to do for this specific application. In other cases, you might want to grant access from this application to other applications such as an API. Take a look at this post for more information about calling the Graph API or your own API.

We will just present the token obtained by the client to API Management. In turn, API Management will verify the token. If it does not pass the verification steps, a 401 error will be returned. We will look at API Management in a later post.

A bit of client code

Just browse to https://deploy.baeke.info and view the source. Authentication is performed with ADAL for Javascript. ADAL stands for the Active Directory Authentication Library. The library is loaded with from the CDN.

This is a simple Vue application so we have a Vue instance for data and methods. In that Vue instance data, authContext is setup via a call to new AuthenticationContext. The clientId is the Application ID of the registered app we created above:

authContext: new AuthenticationContext({ 
clientId: '1fc9093e-8a95-44f8-b524-45c5d460b0d8',
postLogoutRedirectUri: window.location
})

To authenticate, the Login button’s click handler calls authContext.login(). The login method uses a redirect. It is also possible to use a pop-up window by setting popUp: true in the object passed to new AuthenticationContext() above. Personally, I do not like that approach though.

In the created lifecycle hook of the Vue instance, there is some code that handles the callback. When not in the callback, getCachedUser() is used to check if the user is logged in. If she is, the token is obtained via acquireToken() and stored in the token variable of the Vue instance. The acquireToken() method allows the application to obtain tokens silently without prompting the user again. The first parameter of acquireToken is the same application ID of the registered app.

Note that the token (an ID token) is not encrypted. You can paste the token in https://jwt.ms and look inside. Here’s an example (click to navigate):

Calling the back-end API

In this application, the calls go to API Management. Here is an example of a call with axios:

axios.post('https://geba.azure-api.net/rg/create?rg='                             + this.createrg.rg , null, this.getAxiosConfig(this.token)) 
.then(function(result) {
console.log("Got response...")
self.response = result.data;
})
.catch(function(error) {
console.log("Error calling webhook: " + error)
})
...

The third parameter is a call to getAxiosConfig that passes the token. getAxiosConfig uses the token to create the Authorization header:

getAxiosConfig: function(token) { 
const config = {
headers: {
"authorization": "bearer " + token
}
}
return config
}

As discussed earlier, the call goes to API Management which will verify the token before allowing a call to webhookd.

Conclusion

With the source of https://deploy.baeke.info and this post, it should be fairly straightforward to enable Azure AD Authentication in a simple single page web application. Note that the code is kept as simple as possible and does not cover any edge cases. In a next post, we will take a look at API Management.

Azure Front Door in front of a static website

In the previous post, I wrote about hosting a simple static website on an Azure Storage Account. To enable a custom URL such as https://blog.baeke.info, you can add Azure CDN. If you use the Verizon Premium tier, you can configure rules such as a http to https redirect rule. This is similar to hosting static sites in an Amazon S3 bucket with Amazon CloudFront although it needs to be said that the http to https redirect is way simpler to configure there.

On Twitter, Karim Vaes reminded me of the Azure Front Door service, which is currently in preview. The tagline of the Azure Front Door service is clear: “scalable and secure entry point for fast delivery of your global applications”.

Azure Front Door Service Preview

The Front Door service is quite advanced and has features like global HTTP load balancing with instant failover, SSL offload, application acceleration and even application firewalling and DDoS protection. The price is lower that the Verizon Premium tier of Azure CDN. Please note that preview pricing is in effect at this moment.

Configuring a Front Door with the portal is very easy with the Front Door Designer. The screenshot below shows the designer for the same website as the previous post but for a different URL:

Front Door Designer

During deployment, you create a name that ends in azurefd.net (here geba.azurefd.net). Afterwards you can add a custom name like deploy.baeke.info in the above example. Similar to the Azure CDN, Front Door will give you a Digicert issued certificate if you enable HTTPS and choose Front Door managed:

Front Door managed SSL certificate

Naturally, the backend pool will refer to the https endpoint of the static website of your Azure Storage Account. I only have one such endpoint, but I could easily add another copy and start load balancing between the two.

In the routing rule, be sure you select the frontend host that matches the custom domain name you set up in the frontend hosts section:

Routing rule

It is still not as easy as in CloudFront to redirect http to https. For my needs, I can allow both http and https to Front Door and redirect in the browser:

if(window.location.href.substr(0,5) !== 'https'){
window.location.href = window.location.href.replace('http', 'https');
}

Not as clean as I would like it but it does the job for now. I can now access https://deploy.baeke.info via Front Door!

Static site hosting on Azure Storage with a custom domain and TLS

A while ago, I blogged about webhookd. It is an application, written in Go, that can easily convert a folder structure with shell scripts into webhooks. With the help of CertMagic, I modified the application to support Let’s Encrypt certificates. The application is hosted on an Azure Linux VM that uses a managed identity to easily allow scripts that use the Azure CLI to access my Azure subscription.

I also wrote a very simple Vue.js front-end application that can call these webhooks. It’s just an index.html, a 404.html and some CSS. The web page uses Azure AD authentication to an intermediary Azure Function that acts as some sort of proxy to the webhookd server.

Since a few weeks, Azure supports hosting static sites in an Azure Storage Account. Let’s take a look at how simple it is to host your files there and attach a custom DNS name and certificate via Azure CDN.

Enable static content on Storage Account

In your Azure Storage General Purpose v2 account, simply navigate to Static website, enable the feature and type the name of your index and error document:

When you click Save, the endpoint is shown. You will also notice the $web link to the identically named container. You will need to upload your files to that container using the portal, Storage Explorer or even the Azure CLI. With the Azure CLI, you can use this command:

az storage blob upload \
--container-name mystoragecontainer \
--name blobName \
--file ~/path/to/local/file

Custom domain and certificate

It’s great that I can access my site right away, but I want to use https://azdeploy.baeke.info instead of that name. To do that, create a CDN endpoint. In the storage account settings, find the Azure CDN option and create a new CDN profile and endpoint.

Important: in the settings, set the origin hostname to the primary endpoint you were given when you enabled the static website on the storage account

When the profile and endpoint is created, you can open it in the Azure Portal:

In your case, the custom domains list will still be empty at this point. You will have an new endpoint hostname (ending in azureedge.net) that gets its content from the origin hostname. You can browse to the endpoint hostname now as well.

Although the endpoint hostname is a bit better, I want to browse to this website with a custom domain name. Before we enable that, create a CNAME record in your DNS zone that maps to the endpoint hostname. In my case, in my CloudFlare DNS settings, I added a CNAME that maps azdeploy.baeke.info to gebastatic.azureedge.net. When that is finished, click + Custom Domain to add, well, your custom domain.

The only thing left to do is to add a certificate for your custom domain. Although you can add your own certificate, Azure CDN can also provide a certificate and completely automate the certificate management. Just make sure that your created the CNAME correctly and you should be good to go:

Custom certificate via Azure CDN

Above, I enabled the custom domain HTTPS feature and chose CDN Managed. Although it took a while for the certificate to be issued and copied to all points of presence (POPs), the process was flawless. The certificate is issued by Digicert:

Azure CDN certificate issued by Digicert

Some loose ends?

Great! I can now browse to https://azdeploy.baeke.info securely. Sadly, when you choose the Standard Microsoft CDN tier as the content delivery network, http to https redirection is not supported. The error when you browse to the http endpoint is definitely not pretty:

Users will probably think there is an error of some sorts. If you switch the CDN to Verizon Premium, you can create a redirection rule with the rules engine:

Premium Verizon Redirect Rule

When you add the above rule to the rules engine, it takes a few hours before it becomes active. Having to wait that long feels awkward in the age of instant gratification!

Conclusion

Being able to host your static website in Azure Storage greatly simplifies hosting both simple static websites as more advanced single page applications or SPAs. The CDN feature, including its automatic certificate management feature, adds additional flexibility.

%d bloggers like this: